Главное


Принцип действия транзисторов

На каждый p-n переход транзистора может быть подано как прямое, так и обратное напряжение. Соответственно различают четыре режима работы транзистора: режим отсечки - на оба перехода подано обратное напряжение; режим насыщения - на оба перехода подано прямое напряжение; активный режим - на эмиттерный переход подано прямое напряжение, а на коллекторный - обратное; инверсный режим - на эмиттерный переход подано обратное напряжение, а на коллекторный - прямое.

При работе транзистора в качестве усилителя эмиттерный переход включают в прямом направлении, т. е. он открыт (p-n переход узкий), а коллекторный включают в обратном направлении, т.е. он закрыт(p-n переход широкий).

Источник питания Ебэ подключён к эмиттерному переходу в прямом напряжении (плюсом к эмиттеру) и через эмиттерный переход проходит прямой ток. При этом из эмиттера в базу инжектируются дырки , а из базы в эмиттер - электроны. То есть ток эмиттера состоит из двух составляющих: электронной и дырочной:

IЭ=IЭ диф=IЭр+IЭn=IЭБО[exp(EЭБ/φТ)-1] (6)

Так как pэ»nб ( эмиттер легирован значительно сильнее базы), то дырочная составляющая тока эмиттера оказывается много больше электронной составляющей IЭp»IЭn, которая замыкается через цепь базы и не может участвовать в создании тока коллектора. Поэтому её и стремятся сделать по возможности малой. Отношение называется коэффициентом инжекции ( или эффективностью эмиттера).

γ=IЭр /IЭ=IЭр /(IЭр+IЭn)=1/(1+IЭn /IЭр) (7)

Коэффициент инжекции близок к единице: γ =0,98-0,995. Инжектированные из эмиттера дырки в базе оказываются неосновными носителями, и они двигаются главным образом за счёт диффузии, стремясь равномерно распределиться по всему объёму базы. Так как толщина базы мала, большинство дырок не успевает рекомбинировать в ней и достигает коллекторного перехода. Но некоторое количество дырок всё же успевает рекомбинировать с электронами проводимости в базе, тем самым, вызывая дополнительный приток электронов в базу из внешней цепи.

Это обусловливает разделение дырочной составляющей тока эмиттера:

IЭp=Iку+IЭpeк

Iку - управляемая часть тока эмиттера, замыкающаяся через коллекторную цепь и определяемая дырками, дошедшими до коллекторного перехода;

Iэрек - рекомбинационная составляющая тока эмиттера ,которая замыкается через цепь базы и характеризует потери инжектированных дырок.

Отношение называется коэффициентом переноса.

ξ=Iку/Iэр=Iку/(Iку+Iэрек) (8)

В основном рекомбинация происходит в пассивной области базы, но у правильно сконструированного кристалла Iэр» Iэрек и поэтому коэффициент переноса близок к единице: ξ=0,988-0,995.

Итак, у бездрейфового транзистора при обычном его режиме работы значения γ и ξ близки к единице. Поэтому и отношение называемое интегральным коэффициентом передачи тока эмиттера также оказывается близким к единице: h21б=0,95-0,99.

h21б=Iку/Iэ=(Iку/Iэр)(Iэр/Iэ)=ξγ (9)

Этот коэффициент показывает, какая часть тока эмиттера замыкается через коллекторную цепь, а также характеризует управляющие свойства транзистора. Вблизи коллекторного перехода поток дырок попадает под действие электрического поля этого обратносмещённого перехода, что вызывает быстрый дрейф дырок через коллекторный переход в область коллектора (их экстракцию). В коллекторе дырки становятся основными носителями зарядов, они легко доходят до коллекторного вывода, создавая ток во внешней цепи транзистора. Нужно сказать, что при подключении обратного коллекторного напряжения происходит увеличение потенциального барьера и толщины коллекторного перехода, который увеличивается за счёт области базы.

В коллекторной цепи ( при отсутствии тока эмиттера, т.е. Iэ=0) появляется слабый ток обратно включённого p-n перехода.

Этот ток называют обратным током коллектора и обозначают Iкбо. Он в основном определяется концентрацией неосновных носителей (дырок) в базе, т.к. при рк»рб, концентрация неосновных носителей в коллекторе оказывается пренебрежимо малой.

Сопротивление обратносмещённого коллекторного перехода очень велико - несколько МегаОм и более. Поэтому в цепь коллектора можно включать весьма большие сопротивления нагрузки, не изменяя величину коллекторного тока. Соответственно в цепи нагрузки может выделяться значительная мощность. Сопротивление прямосмещённого эмиттерного перехода, напротив весьма мало (при токе 1mA оно составляет около 25Ом). Поэтому при почти одинаковых токах мощность, потребляемая в цепи эмиттера, оказывается несравненно меньше, чем мощность, выделяемая в цепи нагрузки. Следовательно, транзистор способен усиливать мощность, т.е. является усилительным прибором.

Перейти на страницу: 1 2

Другие статьи по теме

Тепловой расчет аппарата с перфорированным корпусом
Большинство радиотехнических устройств, потребляя от источников питания мощность, измеряемую десятками, а иногда и сотнями ватт, отдают полезной нагрузке от десятых долей д ...

Исследование принципов технической реализации и эффективности сигналов с ортогональной частотной модуляцией
Практически для всех типов современных радиосистем передачи информации характерна многоканальная или параллельная передача, при которой по общему высокочастотному тракту радиосистемы пер ...

Цифровизация участка первичной сети связи
Развитие науки и техники способствовало развитию телекоммуникационных сетей как всего мира, так и Украины. Передача мультимедийного трафика на первичной сети связи Украины осуществляется ...

www.techspirit.ru © 2021