Главное


Примеры применения графена

графен полупроводниковый модификация углерод

В настоящее время в области применения графена ведутся разработки в следующих направлениях:

Высокочастотные транзисторы. Подвижность электронов в графене гораздо больше, чем в кремнии, поэтому цифровые элементы из графена обеспечивают более высокую частоту работы. Некоторые компании уже заявляли об успехах в этой области. Так, транзисторы IBM работают на частоте 26 ГГц и имеют размер около 240 нм. Поскольку между размерами транзистора и его производительностью существует обратная зависимость, увеличение рабочей частоты достигается с за счет уменьшения его размеров.

Строение графенового транзистора

Микросхемы памяти. Прототип нового типа запоминающего устройства состоит всего из 10 атомов графена Во время лабораторных тестов группе профессора Джеймса Тура из американского Университета Райс удалось создать кремниевые модули, на которых были размещены 10 атомарных слоев графена. В итоге графеновый слой получил толщину около 5 нм. Исследователи говорят, что в новых экспериментальных модулях базовые ячейки хранения информации примерно в 40 раз меньше ячеек, используемых в самых современных 20-нм модулях NAND-памяти. Данная технология потенциально способна во много раз увеличить емкость модулей памяти. Кроме того, данные запоминающие устройства способны выдерживать сильное радиационное излучение и температуру до 200°C, сохраняя всю информацию.

Ячейка флэш-памяти на основе графена

Еще одно преимущество разработки заключается в беспрецедентной экономичности расхода энергии. Для хранения данных модули памяти используют два исходных состояния - нейтральное (выключенное) и заряженное (включенное). Для того, чтобы закодировать 1 бит информации в графеновых модулях требуется в миллион раз меньше энергии, чем для кодирования того же бита в кремниевых чипах.

Электроды для суперконденсаторов. Проводимость графеновых электродов > превышает 1700 См/м, тогда как у электродов на активированном угле она составляет лишь 10-100 См/м. Благодаря высокой механической прочности LSG-электроды могут использоваться в суперконденсаторах без связующих элементов или токоприемников, что упрощает конструкцию и снижает себестоимость изготовления суперконденсаторов.

Графеновый суперконденсатор (ионистор)

Исследователи из Калифорнийского университета Лос-Анджелеса и Калифорнийского института наносистем (California NanoSystems Institute) продемонстрировали высокопроизводительные электрохимические конденсаторы на основе графена, которые сохраняют превосходные электрохимические параметры при больших механических нагрузках. Статья на эту тему в марте была опубликована в журнале Science.

Устройства, изготовленные с использованием гравированных лазером графеновых электродов, характеризуются очень высокой плотностью энергии в разных электролитах, высокой плотностью мощности и поцикловой стабильностью. Более того, эти суперконденсаторы сохраняют отличные электрохимические свойства при больших механических нагрузках, благодаря чему их можно будет применять в мощных и гибких электронных устройствах.

Недорогие дисплеи для портативных устройств. Графен можно использовать вместо ITO (оксида индия-олова) в электродах для OLED-дисплеев. Во-первых, это позволяет снизить стоимость дисплея, а во-вторых, упрощает его утилизацию за счет прекращения использования металлических элементов.

Дисплей, изготовленный с применением графена

Кроме того, было установлено >, что графен пропускает до 98% света. Это значительно выше показателя пропускания лучших материалов из ITO (82-85%). Графен обладает высокой электропроводностью, что позволяет использовать его для создания прозрачных электродов, управляющих поляризацией и состоянием жидких кристаллов.

Другая группа исследователей недавно установила , что несколько слоёв графена, нагретые при температуре 300-400°C в присутствии порошкового хлорида железа (FeCl3) приводит к интеркаляции слоёв графена и хлорида железа. Электроны из хлорида железа увеличивают число носителей заряда в слоях графена, а результате чего поверхностное сопротивление слоя падает до 8,8 Ом на квадрат при видимой прозрачности материала 84%. Новый материал имеет хорошую долговременную и температурную стабильность и во много раз лучше по характеристикам, чем сравнимые слои ITO: при том же поверхностном сопротивлении последний имеет прозрачность лишь 75%, а при той же прозрачности - сопротивление в 40 Ом на квадрат.

Перейти на страницу: 1 2

Другие статьи по теме

Цифровизация участка первичной сети связи
Развитие науки и техники способствовало развитию телекоммуникационных сетей как всего мира, так и Украины. Передача мультимедийного трафика на первичной сети связи Украины осуществляется ...

Амплитудная модуляция. Функция Берга
Радиотехника - научно-техническая область, задачами которой являются: ) изучения принципов генерации, усиления, излучения и приема электромагнитных колебаний и волн, относящихся к ...

Диспетчерская централизация на базе комплекса технических средств Неман
Диспетчерская централизация (ДЦ) - это комплекс устройств железнодорожной автоматики и телемеханики, состоящий из автоблокировки на перегонах, электрической централизации стрелок ...

www.techspirit.ru © 2019