Главное


Физико-математическое моделирование измерительных преобразователей

В приведённом выше обзоре рассматриваются основные конструктивные особенности коаксиальных резонаторных измерительных преобразователей. Экспериментальная градуировка РИП по эталонным образцам имеет множество недостатков. Строгая теория и адекватная модель коаксиального РИП позволяет проводить теоретическую градуировку и многопараметрическую оптимизацию по заданному параметру.

Рассмотрим основные теоретические положения и модели, позволяющие сопоставить информационные сигналы РИП с электрофизическими параметрами исследуемого образца.

В ранних публикациях [1 - 12] проводилась попытка интерпретации открытого торца четвертьволнового резонатора, нагруженного на образец, сосредоточенной цепью, с эквивалентным полным сопротивлением. Пересчёт резонансной частоты и добротности резонатора осуществлялся с поправкой на величину данного сопротивления. Для этого в [12] предложен метод вычисления комплексной проводимости коаксиальной линии передачи, нагруженной на образец с комплексной относительной диэлектрической проницаемостью . При расчёте учитывались высшие моды, образующиеся в образце вблизи открытого торца. При этом комплексная проводимость определялась выражением:

,

где - распределение радиальной составляющёй напряжённости электрического поля.

Модель, основанная на алгоритме приближения заданного поля [16] позволяет получить значение комплексной проводимости на торце коаксиального волновода, нагруженного на слоистый образец с потерями. Данный метод также учитывает влияние высших мод. Согласно нему, полная комплексная проводимость коаксиального волновода, нагруженного на слоёв диэлектрика с толщиной и комплексной относительной диэлектрической проницаемостью , составляет:

где ; - волновое число в свободном пространстве;

Однако данная модель не позволяет проводить учёт тепловых потерь в реальных металлах.

Более приближённой к реальному РИП, является модель коаксиального резонаторного измерительного преобразователя, основанная на методе возмущений [12]. Данный метод состоит в первоначальном получении простого решения для «невозмущённой» системы и вычислении поправок в решение, вносимых возмущением. «Подправленное» решение можно использовать для нахождения следующей поправки и т. д. Таким образом, процесс сводится к последовательному, поэтапному уточнению. Решение получается в виде ряда по степеням некоторой безразмерной величины, характеризующей возмущение. Когда возмущение действительно мало, каждый последующий член данного ряда много меньше предыдущего, и поэтому можно ограничиться лишь первыми членами ряда (первыми поправками). Так в [12] получены информационные сигналы коаксиального резонатора, при наличии образца с электрофизическими параметрами , :

, ,

где ; .

Данный подход позволяет проводить расчёт с учётом активных потерь в стенках резонатора, однако, не учитывает излучательные потери.

Прямые конечно-разностные численные методы [12] позволяют строить модели с произвольной геометрией, при сохранении высокой точности решения. В [12] предложена численная модель четвертьволнового коаксиального измерительного преобразователя, основанная на методе конечных элементов. Данная модель позволяет получить семейство преобразовательных характеристик РИП, однако, влияние излучательных и тепловых потерь не учитывается.

Перейти на страницу: 1 2

Другие статьи по теме

Исследование алгоритма оценивания стохастических динамических систем
Целью данной работы является исследование алгоритма оценивания стохастических динамических систем называемого Фильтром Калмана. Задачей работы помимо исследования алгоритма является реа ...

Волноводно-щелевая антенна нерезонансного типа
волноводный щелевой антенна Щелевые антенны применяются для передачи энергии из одного волновода в другой, для излучения энергии во внешнее пространство. Компактность и возм ...

Активные RC-фильтры (ARC-Ф)
Цель работы - изучение принципа работы, исследование амплитудных, частотных характеристик и параметров активных фильтров нижних и верхних частот, полосно-пропускающих и полосно-задержи ...

www.techspirit.ru © 2020