Главное


Переходные процессы в дифференцирующей RC-цепи

Начертим принципиальную схему дифференцирующей RC-цепи в программе MS-10 (Рисунок 2.1)

Постоянная времени этой RC-цепи была рассчитана ранее в пункте 1.1.

Произведем расчет переходных процессов, происходящих в дифференцирующей RC-цепи под действием импульса длительностью timp. Расчет будем производить операторным методом.

Запишем закон Ома в операторной форме:

В этой формуле Uin - напряжение на входе, С - емкость конденсатора RC-цепи, R - сопротивление резистора RC-цепи, p - изображение времени.

Выразим из этой формулы ток I:

Отсюда найдем напряжение на резисторе RC-цепи, т.к. через него течет ток I.

Находим оригинал напряжения на резисторе:

По такому закону будет изменяться напряжение на резисторе с момента включения импульса. Теперь вычислим закон изменения этого напряжения при отключении импульса. Расчет так же поведем операторным методом. Не забудем, что теперь необходимо учесть начальное напряжение на конденсатора. Оно равно

Аналогичным образом:

Таким образом, в общем случае

Построим в одной системе координат входной импульс, длительностью timp=0,1τ и напряжение на резисторе R. На рисунке 2.2 изображен график, выполненный в программе MathCAD, а на рисунке 2.3 - в программе MS-10.

Видим, что графики, выполненные в программах MathCAD и MS-10 совпадают. Это свидетельствует о том, что расчет данного переходного процесса выполнен верно.

Построим в одной системе координат входной импульс, длительностью timp=τ и напряжение на резисторе R. На рисунке 2.4 изображен график, выполненный в программе MathCAD, а на рисунке 2.5 - в программе MS-10.

Видим, что графики, выполненные в программах MathCAD и MS-10 совпадают. Это свидетельствует о том, что расчет данного переходного процесса выполнен верно.

Построим в одной системе координат входной импульс, длительностью timp=10τ и напряжение на резисторе R. На рисунке 2.6 изображен график, выполненный в программе MathCAD, а на рисунке 2.7 - в программе MS-10.

Из рисунков 2.6 и 2.7 видно, что импульс длительностью дифференцирует хорошо, так как напряжение на резисторе успевает упасть до нулевого уровня, прежде чем начинается реакция на следующий фронт импульса.

При длительности импульса , как показано на рисунках 2.4 и 2.5, импульс дифференцирует плохо, так как напряжение на резисторе не успевает вернуться на нулевой, прежде чем в цепи начинается переходный процесс, соответствующий второму фронту импульса.

Наконец, при длительности импульса 0,1τ, как показано на рисунках 2.2 и 2.3, импульс дифференцируется еще хуже.

Сделаем вывод, что цепь дифференцирует тем лучше, чем больше длительность импульса на входе.

Считается, что цепь хорошо работает, если её постоянная времени в 7 10 раз меньше длительности обрабатываемых импульсов.

Другие статьи по теме

Исследование методов помехозащищенности радиотехнических систем
Проблема повышения помехозащищенности систем управления и связи является весьма острой и до сих пор не нашла своего решения в большинстве прикладных задач. Решению этой проблемы способс ...

Графен в электронике сегодня и завтра
Графен был экспериментально обнаружен в 2004 г. двумя английскими учеными российского происхождения - Андреем Геймом и Константином Новосёловым, за что они вскоре получили Нобелевскую п ...

Усилитель мощности переменного сигнала
Темой курсовой работы является разработка усилителя мощности переменного сигнала. Усилитель имеет дифференциальный вход, бестрансформаторный выход и плавную регулировку усиления от «0» д ...

www.techspirit.ru © 2021