Главное


Технологии мультиплексирования

Каждый лазерный передатчик в системе WDM выдает сигнал на одной из заданных частот. Все эти сигналы (каналы) необходимо мультиплексировать (объединить друг с другом) в единый составной сигнал. Устройство, которое выполняет эту функцию, называется оптическим мультиплексором MUX (или OM). Аналогичное устройство на другом конце линии связи разделяет составной сигнал на отдельные каналы и называется оптическим демультиплексором DEMUX (или OD). В отличие от систем TDM, в которых подобные операции уплотнения каналов происходят во временной области, и основное внимание уделяется точности синхронизации приемника и передатчика, в системах WDM мультиплексированию и демультиплексированию подвергаются спектральные компоненты отдельных сигналов, характеристики которых всегда известны заранее.

На рисунке 2.1 схематично показаны WDM-мультиплексор и демультиплексор.

Рисунок 2.1 - Мультиплексор и демультиплексор

Современные оптические мультиплексоры создаются преимущественно на основе тонкопленочных фильтров и, немного реже - на матрицах волноводных дифракционных решеток и волоконных брэгговских решетках. При дальнейшем увеличении плотности размещения каналов в системах DWDM и ужесточении требований к оптическим устройствам MUX/DEMUX, по-видимому, будет меняться и спектр используемых технологий.

Тонкопленочный фильтр состоит из нескольких слоев прозрачного диэлектрического материала с различными показателями преломления, нанесенных последовательно друг за другом на оптическую подложку. На каждой границе раздела между слоями из-за различия их показателей преломления часть падающего светового пучка отражается обратно. Этот отраженный свет усиливает или подавляет падающий (отраженная волна интерферирует с падающей) в зависимости от длины волны. Надлежащим образом подобрав показатель преломления и толщину каждого слоя, можно получить фильтр, который будет пропускать любой заданный диапазон длин волн и отражать все остальные.

На рисунке 2.2 схематично показан принцип работы тонкопленочного фильтра. I1 - падающая волна; I2 - отраженная; I3 - прошедшая.

Рисунок 2.2 - Принцип работы тонкопленочного фильтра

Выбор диэлектрических материалов ограничен, так как многие материалы с хорошими оптическими свойствами имеют физические качества, далекие от требуемых. В общем случае, чем жестче требования к фильтру, тем большее число слоев необходимо нанести на подложку. Несмотря на имеющиеся сложности, эта технология позволяет, незначительно изменяя процесс производства, создавать недорогие фильтры с различными специальными спектральными свойствами.

В мультиплексорах и демультиплексорах обычно используются одноступенчатые тонкопленочные фильтры, каждый из которых выделяет из составного сигнала (или добавляет в него) один канал. Фильтры расположены под наклоном к оптической оси, чтобы отраженный свет не попадал обратно в систему. Наклонное расположение фильтров изменяет эффективную толщину слоев и меняет таким образом полосу пропускания, что необходимо учитывать при проектировании фильтров. Для обработки многоволновых сигналов используют многоступенчатые системы фильтров, в которых свет, отраженный от каждого фильтра, попадает на вход следующего фильтра, что придает исключительную важность вопросу их выравнивания (рисунок 2.3).

Рисунок 2.3 - Многоступенчатая система тонкопленочных фильтров для демультиплексирования составного сигнала

Тонкопленочные фильтры имеют достаточно узкую полосу пропускания и используются в системах WDM с 16-ю или 32-мя каналами. В современных системах с более плотным расположением каналов используют другие технологии.

Волоконная брэгговская решетка - это, по сути, оптический интерферометр, встроенный в волокно. Волокно, легированное некоторыми веществами (обычно германием), может изменять свой показатель преломления под воздействием ультрафиолетового света. Если облучить такое волокно ультрафиолетовым излучением с определенной пространственной периодической структурой, то волокно превращается в своего рода дифракционную решетку. Другими словами, это волокно будет практически полностью отражать свет определенного, наперед заданного диапазона длин волн, и пропускать свет всех остальных длин волн, как показано на рисунке 2.4.

Перейти на страницу: 1 2 3 4

Другие статьи по теме

Исследование методов помехозащищенности радиотехнических систем
Проблема повышения помехозащищенности систем управления и связи является весьма острой и до сих пор не нашла своего решения в большинстве прикладных задач. Решению этой проблемы способс ...

Генератор линейно-изменяющихся напряжений
Генераторы синусоидального напряжения отличаются тем, что у них цепь обратной связи имеет резонансные свойства. Поэтому условия возникновения колебаний выполняются только на одной частот ...

Характеристики сигналов в каналах связи
Беспроводные сети. Беспроводная Ethernet. Существует несколько технологий беспроводных сетей, использующих как радио-, так и инфракрасные волны. Эти технологии существуют уже несколько лет ...

www.techspirit.ru © 2020