Главное


Аппаратная реализация модулярного сумматора и умножителя на базе ПЛИС

В настоящее время невозможно представить себе сложную автоматическую систему без того, чтобы ее центральную часть не составляли вычислительные машины, выполняющие функции обработки информации и управления. Поэтому очевидна ценность исследований методов ускорения расчетов и повышения производительности вычислительных машин.

Задачу повышения скорости и надёжности вычислений можно рассматривать с двух сторон. С одной стороны это аппаратный уровень, фундаментальными ограничениями на котором являются технические возможности создания элементной базы - уменьшение размеров кристаллов, увеличение частоты синхронизации (тактовой частоты), решение проблем теплоотвода и др. Во многом этот уровень определяется современным состоянием фундаментальных наук, прежде всего, физики. С другой стороны это - математико-алгоритмический уровень вычислений, и фундаментальными ограничивающими факторами здесь выступают, в числе прочих, необходимость последовательного вычисления, когда следующий этап (шаг) частично или полностью зависит от предыдущих шагов. Даже простейшие арифметические операции сложения и умножения (не говоря уже о делении) при реализации их вычислителями с архитектурой фон-Неймана осуществляются побитово, и вычисление каждого последующего бита зависит от результата операции над предыдущими битами. Существуют и другие вычислительные архитектуры, в которых акцент сделан на параллельность и массовость вычислений. Большую популярность сейчас имеют нейронные сети, которые, обладая алгоритмической универсальностью машины Тьюринга, уже доказали своё преимущество в слабо формализованных задачах, связанных с необходимостью обучения. Использование системы остаточных классов (СОК) и модулярных вычислений позволяет существенно увеличить скорость арифметических вычислений за счёт параллельного выполнения операций над остатками.

Долгое время модулярная арифметика рассматривалась как интересный сугубо теоретический вопрос из-за сложности производства вычислительных структур для её реализации. Современное развитие технологии интегральных схем сделало возможным использование модулярной арифметики для многих областей цифровой обработки сигналов, распознавания образов и других задач, требующих интенсивных вычислений [1].

    Другие статьи по теме

    Исследование принципов технической реализации и эффективности сигналов с ортогональной частотной модуляцией
    Практически для всех типов современных радиосистем передачи информации характерна многоканальная или параллельная передача, при которой по общему высокочастотному тракту радиосистемы пер ...

    Амплитудная модуляция. Функция Берга
    Радиотехника - научно-техническая область, задачами которой являются: ) изучения принципов генерации, усиления, излучения и приема электромагнитных колебаний и волн, относящихся к ...

    Анализ существующей ВОЛС компании ЗАО Мобиком-Хабаровск в Забайкальском крае
    Процесс глобального развития информатизации общества происходит колоссальными темпами. С каждым годом значительно увеличивается объем потоков передаваемой информации. Вместе с тем повыш ...

    www.techspirit.ru © 2021