Главное


Аппаратная реализация модулярного сумматора и умножителя на базе ПЛИС

В настоящее время невозможно представить себе сложную автоматическую систему без того, чтобы ее центральную часть не составляли вычислительные машины, выполняющие функции обработки информации и управления. Поэтому очевидна ценность исследований методов ускорения расчетов и повышения производительности вычислительных машин.

Задачу повышения скорости и надёжности вычислений можно рассматривать с двух сторон. С одной стороны это аппаратный уровень, фундаментальными ограничениями на котором являются технические возможности создания элементной базы - уменьшение размеров кристаллов, увеличение частоты синхронизации (тактовой частоты), решение проблем теплоотвода и др. Во многом этот уровень определяется современным состоянием фундаментальных наук, прежде всего, физики. С другой стороны это - математико-алгоритмический уровень вычислений, и фундаментальными ограничивающими факторами здесь выступают, в числе прочих, необходимость последовательного вычисления, когда следующий этап (шаг) частично или полностью зависит от предыдущих шагов. Даже простейшие арифметические операции сложения и умножения (не говоря уже о делении) при реализации их вычислителями с архитектурой фон-Неймана осуществляются побитово, и вычисление каждого последующего бита зависит от результата операции над предыдущими битами. Существуют и другие вычислительные архитектуры, в которых акцент сделан на параллельность и массовость вычислений. Большую популярность сейчас имеют нейронные сети, которые, обладая алгоритмической универсальностью машины Тьюринга, уже доказали своё преимущество в слабо формализованных задачах, связанных с необходимостью обучения. Использование системы остаточных классов (СОК) и модулярных вычислений позволяет существенно увеличить скорость арифметических вычислений за счёт параллельного выполнения операций над остатками.

Долгое время модулярная арифметика рассматривалась как интересный сугубо теоретический вопрос из-за сложности производства вычислительных структур для её реализации. Современное развитие технологии интегральных схем сделало возможным использование модулярной арифметики для многих областей цифровой обработки сигналов, распознавания образов и других задач, требующих интенсивных вычислений [1].

    Другие статьи по теме

    Методы стабилизации коэффициента усиления оптических усилителей
    В настоящее время оптоволоконные сети являются самым перспективным видом информационных сетей, что обусловлено множеством их преимуществ. В то время как одна из проблем коаксиальных кабе ...

    Устройство сбора данных web-камера
    Телевидение - это передача изображения на расстояние с помощью электронных устройств. При передаче изображения формируются электрические сигналы элементов изображения, при этом один кадр из ...

    Исследование динамических характеристик системы автоматического управления
    При проектировании автоматических систем приходиться решать такие задачи, как обеспечение устойчивости и точности процесса регулирования, имеющие противоречивый характ ...

    www.techspirit.ru © 2019