Главное


Микропроцессорная система управления объектом

Микропроцессорные и информационно-управляющие системы, в настоящее время, стали одним из наиболее дешевых и быстрых способов обработки информации. Практически ни одна область современной науки и техники не обходиться без использования их.

В настоящее время всё острее встают проблемы безопасности. Практика показывает, что наибольшее число аварийных ситуаций возникает из-за ошибочных действий человека. В связи с этим большое значение имеет применение в системах управления технических средств позволяющих полностью автоматизировать этот процесс. Развитие микропроцессорных и информационно-управляющих систем позволило перейти на качественно новую элементную базу, которая в свою очередь повысила скорость и качество выполнения операций.

В течении четырех лет, начиная с 1976 г., фирмой INTEL разрабатывалось получившее широкое распространение семейство 8-и разрядных однокристальных микроконтроллеров с программным управлением MCS-48.

Вычислительные возможности первых однокристальных микроЭВМ были исчерпаны уже к началу 80-х гг. Встала задача разработки новых микроконтроллеров, обладающих расширенными функциональными ресурсами. Среди предложенных новых архитектур однокристальных микроЭВМ следует выделить 8-разрядную архитектуру семейства микроконтроллеров MCS-51, предложенного фирмой INTEL в 1981 г. Она удовлетворяет всем требованиям, представляемым к однокристальным микроконтроллерам, и является наиболее применяемой.

Однако к настоящему времени значительную часть мирового рынка микропроцессорных средств составляет другой вид однокристальных контроллеров - это так называемые периферийные интерфейсные контроллеры или PIC. Они представляют собой высокопроизводительные БИС, в которые интегрированы помимо цифровых устройств (собственно микроконтроллера) также и аналоговые - это различные АЦП, компараторы, модули сравнения ШИМ и т.д. Это делает данные устройства чрезвычайно популярными у производителей «интеллектуальных» устройств.

Исходя из вышеперечисленного, разрабатываемая нами система управления будет обладать следующими свойствами:

простота в установке, наладке и эксплуатации;

небольшие габариты;

небольшая стоимость;

обработка системой различных аварийных ситуаций;

возможность получения информации о состоянии установки и технологического процесса с помощью ЭВМ.

В курсовой работе разрабатывается микропроцессорная система управления некоторым объектом.

Микропроцессорная система принимает информацию об объекте управления от аналоговых и цифровых датчиков, вырабатывает управляющие воздействия (Y) в соответствии с законами управления и подает их на исполнительные механизмы. Микропроцессорная система состоит из микроконтроллера - управляющей микроЭВМ, пульта управления и последовательного канала связи. С помощью пульта управления оператор получает возможность управлять работой микроЭВМ: запускать ее и останавливать, выдавать значение некоторых уставок (констант), снимать с индикаторов информацию о состоянии объекта и т. п. С помощью последовательного канала связи микропроцессорная система может передавать обработанную информацию системе более высокого уровня по ее запросу.

В курсовой работе разрабатывается структурная схема микропроцессорной системы, включая устройства связи с датчиками и исполнительными механизмами, и программы, обеспечивающие выполнение алгоритма управления и алгоритма обмена, осуществляется оценка характеристик микропроцессорной системы и разработка блока питания. В разделе, посвященном расчету электрических параметров системы, необходимо рассчитать потребляемый ток и мощность по каждой из цепей питания. На основании этих расчетов разрабатывается или выбирается готовый блок питания.

. Обработка цифровой информации

Микропроцессорная система опрашивает двоичные датчики Х1,..., Х5 и вычисляет булеву функцию

(1)

При единичном значении функции система вырабатывает выходной сигнал Y1 = 1 длительностью Т1. Это означает, что через T1 после выдачи единичного сигнала Y1 необходимо выработать нулевой сигнал Y1.

В системе имеется также двоичный датчик аварийной ситуации Х0, единичный сигнал с которого вызывает аварийный останов системы в любой момент выполнения рабочего цикла программы.

. Обработка аналоговой информации

Сигналы с аналоговых датчиков V1 и V2 преобразуются в цифровую форму в АЦП. С выхода АЦП 8-разрядные коды N1 и N2, представляющее собой целые числа без знака, поступают на обработку. Величина К - 8-разрядный код уставки, поступающий с тумблерного регистра пульта управления.

На основе полученных данных контроллер реализует следующую функцию:

(2)

Полученное значение функции N сравнивается с константой Q, хранящейся во внутренней памяти. В зависимости от результатов сравнения система вырабатывает двоичные управляющие воздействия Y2 (если N < Q) или Y3 (если N > Q) длительностью Т2 или Т3 соответственно.

Управляющее воздействие Y4 формируется в виде аналогового сигнала V4 с ЦАП и поступает на ИМ. Значение Y4 определяется как восьмиразрядное двоичное число по формуле:

(3)

где а0 и a1 - восьмиразрядные коэффициенты, хранящиеся во внутренней памяти микроконтроллера; N2 - восьмиразрядный код, поступающий с выхода АЦП.

Предполагается, что исходные величины, поступающие с АЦП меньше единицы и представляются двоичным числом с фиксированной запятой.

Если после умножения значение Y4 превышает восемь разрядов, то необходимо принимать значение Y4 равное младшему байту.

. Обработка запросов на прерывания

Система обрабатывает запросы на прерывание пяти уровней:

запрос на прерывание по сигналу отказа источника питания IRQ0;

запрос на прерывание по сигналу аварийного датчика IRQ1;

запрос на прерывание от терминала внешней ЭВМ IRQ2;

запрос на прерывание от таймера IRQ3;

запрос на прерывание от пульта управления (прерывание оператора) IRQ4.

Прерывание работы системы при отказе источника питания имеет высший приоритет. Система при этом переходит на резервный источник питания (батарейка) вырабатывает сигнал Y5 установки внешних устройств в исходное состояние (например, отвод головок от диска, останов дисковода и т. д.) и передает в последовательный канал связи (если он был активен) код символа «!». Сигнал Y5 представит собой два прямоугольных импульса длительностью 30 мкс, следующие с интервалом в 30 мкс. После выполнении указанных действий микроконтроллер необходимо перевести в режим пониженного энергопотребления.

Прерывание от сигнала аварийного датчика включает на пульте управления аварийную световую и обеспечивает выдачу на индикацию сигналов двоичных датчиков X1,..., Х5 и цифровой код N1, поступающий с АЦП. После этого микроконтроллер переводится в режим пониженного энергопотребления.

Прерывания от терминала внешней ЭВМ осуществляются при приеме последовательным каналом связи символа управления обменом. Приемник последовательного адаптера выставляет при этом запрос на прерывание работы основной программы с целью передачи в последовательный канал связи запрашиваемой информации. Запрашиваемая информация формируется в зависимости от принятого из канала символа. При приеме символа «D» в канал передается значение Y1, при приеме символа А - значение Y4. После загрузки в буфер передатчика БИС последовательного адаптера запрашиваемой информации управление передается в прерванную программу.

Прерывания от пульта управления влекут за собой выполнение следующих действия:

. Выдать на регистр индикации РИ1 значения следующих четырех булевых переменных:

а) последнее значение Y1;

б) результат сравнения N > Q;

в) значение выражения X1 ∧X2 ∧X3 ∧X4;

г) значение выражения X1 ∨X2 ∨X3 ∨X4.

. Запись информации по заранее заданному адресу.

. Организовать выход из прерывания на начало программы обработки.

Пульт управления

Пульт управления должен содержать следующие элементы:

) регистр со светодиодами индикации значения N1 - РИ1;

) регистр со светодиодами индикации значений (X1,..., X5) - РИ2;

) регистр со светодиодами индикации значений Y1, Y2, Y3 - РИЗ;

) регистр со светодиодами индикации кода Y4 - РИ4;

) входной восьмиразрядный регистр Р5 для приема с тумблеров пульта кода K (для вариантов, в которых он используется);

) светодиод индикации, на который подается меандр частотой 2 Гц, соответственно варианту;

) кнопку «Сброс», при нажатии на которую производится начальная установка элементов системы;

) тумблер «Останов», опрашиваемый в конце каждого цикла выполнения программы.

Пульт управления

Пульт управления должен содержать следующие элементы:

устройство индикации;

входной 8-разрядный регистр для приема с тумблеров пульта значение константы К;

светодиод индикации, на который подается меандр частотой 2 Гц;

кнопку «Сброс», при нажатии на которую производится начальная установка элементов системы;

тумблер «Останов», опрашиваемый в конце каждого цикла выполнения;

программы.

    Другие статьи по теме

    4-канальный логический анализатор на PIC микроконтроллере
    Микроконтроллер - компьютер на одной микросхеме. Предназначен для управления различными электронными устройствами и осуществления взаимодействия между ними в соответствии ...

    Изобретение телевидения
    Греческий философ Анаксагор однажды услышал у одного рапсода - странствующего греческого поэта - такую поэтическую фразу: «Его телевидение простирается за границы Эйкумены». Его - то ес ...

    Тепловой расчет аппарата с перфорированным корпусом
    Большинство радиотехнических устройств, потребляя от источников питания мощность, измеряемую десятками, а иногда и сотнями ватт, отдают полезной нагрузке от десятых долей д ...

    www.domen.ru © 2018