Главное


Исследование параметров и аномалий длинной оптической линии

В настоящее время системы связи стали одной из основ развития общества. Спрос на услуги связи, от обычной телефонной связи до широкополосного доступа в Интернет, постоянно растет. Это предъявляет новые требования к современным сетям связи, их пропускной способности, надежности, гибкости. В наибольшей степени эти требования удовлетворяют сети передачи данных на основе волоконно-оптических линий связи, которые обладают огромной пропускной способностью.

Сетевые цифровые технологии развивались до последнего времени параллельно для глобальных и локальных сетей. Технологии глобальных сетей были направлены в основном на развитие цифровых телефонных сетей, используемых для передачи голоса. Технологии локальных сетей - напротив, использовались, в основном, для передачи данных. Развитие цифровых телефонных сетей шло по линии уплотнения каналов как за счет мультиплексирования низкоскоростных первичных каналов T1, так и за счет использования более рациональных методов модуляции позволивших применять для передачи голосового сигнала более низкие чем 64 кбит/с (основной цифровой канал - ОЦК) скорости: 40, 32, 24, 16, 8 и 5,6 кбит/с. Развитие схем мультиплексирования привело к возникновению трех цифровых иерархий с разными (для разных групп стран) уровнями стандартизованных скоростей передачи или каналов: DS2 или T2/E2, DS3 или Т3/Е3, DS4 или Т4/Е4. Эти иерархии, названные плезиохронными (т.е. почти синхронными) цифровыми иерархиями (PDH), широко использовались и продолжают использоваться как в цифровой телефонии, так и для передачи данных.

В 1984 году была разработана технология синхронной цифровой иерархии компанией Bellcore под названием «Синхронные оптические сети» - SONET.

Первый вариант стандарта появился в 1984 году. Затем эта технология была стандартизирована комитетом T1 ANSI. Международная стандартизация технологии проходила под эгидой Европейского института телекоммуникационных стандартов (ETSI) совместно с ANSI и ведущими телекоммуникационными компаниями Америки, Европы и Японии.

Основной целью разработчиков международного стандарта было создание такой технологии, которая позволяла бы передавать трафик всех существующих цифровых каналов (как американских T1-T3, так и европейских E1-E3) в рамках высокоскоростной магистральной сети на волоконно-оптических кабелях и обеспечила бы иерархию скоростей, продолжающую иерархию технологии PDH, до скорости в несколько гигабит в секунду.

В результате длительной работы удалось разработать международный стандарт Synchronous Digital Hierarchy, SDH (спецификации G.707-G.709), а также доработать стандарты SONET таким образом, что аппаратура и стеки SDH и SONET стали совместимыми и могут мультиплексировать входные потоки практически любого стандарта PDH - как американского, так и европейского. В терминологии и начальной скорости технологии SDH и SONET остались расхождения, но это не мешает совместимости аппаратуры разных производителей, а технология SONET/SDH фактически стала считаться единой.

В основе данных технологий заложен метод временного разделения информационных потоков (TDM - time division multiplexing) с формированием синхронных транспортных модулей STM-N (N=1, 4, 16, 64, 256) со скоростями передачи информации соответственно: STM-1 - 155 Мбит/с, STM-4 - 622 Мбит/с, STM-16 - 2,5 Гбит/с, STM-64 - 10 Гбит/с, STM-256 - 40 Гбит/с. Эта технология предусматривает объединение нескольких входных низкоскоростных потоков в один составной высокоскоростной канал (агрегатный поток). Использование технологии TDM позволило увеличить пропускную способность волоконно-оптических линий связи до 10 Гбит/с (STM-64).

Бурное развитие интернета и информационных технологий потребовало внедрения широкополосных систем и, как следствие, модернизации систем TDM. Вначале процесс развития пошел по экстенсивному пути за счет наращивания скорости передачи: STM-1, STM-4, STM-16, STM-64. Однако вскоре выяснилось, что этот путь является тупиковым, прежде всего по техническим соображениям: крайне сложная и дорогая модуляция передающих лазеров, девиация их частоты излучения, уменьшение соотношения сигнал-шум, усиление влияния дисперсии на таких скоростях. Разрешить противоречия помогло свойство оптического волокна: возможность передачи информации на нескольких длинах волн одновременно. С технической точки зрения прорыв был связан с созданием усилителей сигналов на основе оптического волокна, легированного эрбием (EDFA).

Этот новый способ передачи информации по оптическому волокну получил название «технология волнового мультиплексирования оптических каналов» (wavelength division multiplexing - WDM), или «технология спектрального уплотнения каналов». В технологии WDM нет многих ограничений и трудностей, свойственных технологии TDM. Для повышения пропускной способности линии связи вместо увеличения скорости передачи в оптическом канале, как это делается в системах TDM, системы WDM позволяют увеличить число каналов (в данном случае - длин волн), применяемых в системах передачи. При этом в определенных случаях технология WDM позволяет увеличить пропускную способность существующей сети без дорогостоящей замены оптического кабеля и оборудования. Работать с несколькими каналами в одном волокне намного удобнее, чем с несколькими волокнами, так как для обработки любого числа каналов в волокне требуется лишь один мультиплексор WDM, один демультиплексор WDM и соответствующее расстоянию число оптических усилителей.

В данном дипломном проекте рассматриваются основные аспекты применения технологии DWDM на уже существующем участке сети большой протяженности. При этом особое внимание уделяется анализу параметров ВОЛС и аномалий, возникающих в процессе эксплуатации сети, их влияния на передаваемый сигнал, а также методам их обнаружения и контроля.

В данном разделе приведены общие сведения об исследуемом участке сети Иркутск - Чита и его технические спецификации (характеристики кабеля и оборудования), а также основные принципы технологии волнового мультиплексирования.

    Другие статьи по теме

    Генератор гармонических колебаний RC-типа с мощным выходным каскадом
    Значительный прогресс в развитии многих областей науки и техники обусловлен развитием электроники. В настоящее время невозможно найти какую-либо отрасль промышленности, в которой не испо ...

    Блок выполнения операций десятичной арифметики
    Каноническая структура синтеза синхронного вычислительного устройства состоит из двух автоматов - операционного (ОА) и управляющего (УА). Каноническая структура вычислительного ус ...

    Задачи и полномочия ФССП России
    Федеральная служба судебных приставов (ФССП России) - федеральный орган исполнительной власти, осуществляющий функции по обеспечению установленного порядка деятельности судов, исполнени ...

    www.domen.ru © 2018